
    Џkh!                     N    d dl mZmZ d dlmZ ddlmZ ddlmZ  G d de      Z	y)	    )	np_compatarray_namespace)cached_property   )NestedFixedRule)GaussLegendreQuadraturec                   8    e Zd ZdZddZed        Zed        Zy)GaussKronrodQuadratureaz
  
    Gauss-Kronrod quadrature.

    Gauss-Kronrod rules consist of two quadrature rules, one higher-order and one
    lower-order. The higher-order rule is used as the estimate of the integral and the
    difference between them is used as an estimate for the error.

    Gauss-Kronrod is a 1D rule. To use it for multidimensional integrals, it will be
    necessary to use ProductNestedFixed and multiple Gauss-Kronrod rules. See Examples.

    For n-node Gauss-Kronrod, the lower-order rule has ``n//2`` nodes, which are the
    ordinary Gauss-Legendre nodes with corresponding weights. The higher-order rule has
    ``n`` nodes, ``n//2`` of which are the same as the lower-order rule and the
    remaining nodes are the Kronrod extension of those nodes.

    Parameters
    ----------
    npoints : int
        Number of nodes for the higher-order rule.

    xp : array_namespace, optional
        The namespace for the node and weight arrays. Default is None, where NumPy is
        used.

    Attributes
    ----------
    lower : Rule
        Lower-order rule.

    References
    ----------
    .. [1] R. Piessens, E. de Doncker, Quadpack: A Subroutine Package for Automatic
        Integration, files: dqk21.f, dqk15.f (1983).

    Examples
    --------
    Evaluate a 1D integral. Note in this example that ``f`` returns an array, so the
    estimates will also be arrays, despite the fact that this is a 1D problem.

    >>> import numpy as np
    >>> from scipy.integrate import cubature
    >>> from scipy.integrate._rules import GaussKronrodQuadrature
    >>> def f(x):
    ...     return np.cos(x)
    >>> rule = GaussKronrodQuadrature(21) # Use 21-point GaussKronrod
    >>> a, b = np.array([0]), np.array([1])
    >>> rule.estimate(f, a, b) # True value sin(1), approximately 0.84147
     array([0.84147098])
    >>> rule.estimate_error(f, a, b)
     array([1.11022302e-16])

    Evaluate a 2D integral. Note that in this example ``f`` returns a float, so the
    estimates will also be floats.

    >>> import numpy as np
    >>> from scipy.integrate import cubature
    >>> from scipy.integrate._rules import (
    ...     ProductNestedFixed, GaussKronrodQuadrature
    ... )
    >>> def f(x):
    ...     # f(x) = cos(x_1) + cos(x_2)
    ...     return np.sum(np.cos(x), axis=-1)
    >>> rule = ProductNestedFixed(
    ...     [GaussKronrodQuadrature(15), GaussKronrodQuadrature(15)]
    ... ) # Use 15-point Gauss-Kronrod
    >>> a, b = np.array([0, 0]), np.array([1, 1])
    >>> rule.estimate(f, a, b) # True value 2*sin(1), approximately 1.6829
     np.float64(1.682941969615793)
    >>> rule.estimate_error(f, a, b)
     np.float64(2.220446049250313e-16)
    Nc                     |dk7  r|dk7  rt        d      || _        |t        }t        |j	                  d            | _        t        |dz  | j
                        | _        y )N      zFGauss-Kronrod quadrature is currently onlysupported for 15 or 21 nodesr      )xp)NotImplementedErrornpointsr   r   emptyr   r   gauss)selfr   r   s      a/var/www/teggl/fontify/venv/lib/python3.12/site-packages/scipy/integrate/_rules/_gauss_kronrod.py__init__zGaussKronrodQuadrature.__init__R   sc     b=W]% 'E F F :B!"((1+.,WaZDGGD
    c                    | j                   dk(  rj| j                  j                  g d| j                  j                        }| j                  j                  g d| j                  j                        }||fS | j                   dk(  rf| j                  j                  g d| j                  j                        }| j                  j                  g d| j                  j                        }fS )Nr   )g*'il?g*>*?g?g^?gbltu?g"?g @?gj	?g7^)U?gzxP?r   gzxPÿg7^)Uҿgj	ۿg @g"gbltug^gg*>*g*'il)dtype)?[?B@v?碙?"75?牳׷?珁 ?-]+?Hi&>?la{F?o?g|+!?r#   r"   r!   r    r   r   r   r   r   r   r   )g	M ?g)b|_?g>'?g֡㛟?g$:?gb]?gw.?g        gw.ʿgb]ٿg$:g֡㛟g>'g)b|_g	M )ptg[|?a{&?HӺ?F ?\}f?ah]?؜*?g	O?r*   r)   r(   r'   r&   r%   r$   )r   r   asarrayfloat64)r   nodesweightss      r   nodes_and_weightsz(GaussKronrodQuadrature.nodes_and_weightsb   s     <<2GGOO. ggoo1 $ E6 ggoo. ggoo1 & GJ g~W \\RGGOO" ggoo% $ E* ggoo" ggoo% & G* g~r   c                 .    | j                   j                  S N)r   r/   )r   s    r   lower_nodes_and_weightsz.GaussKronrodQuadrature.lower_nodes_and_weights   s    zz+++r   r1   )	__name__
__module____qualname____doc__r   r   r/   propertyr2    r   r   r
   r
   	   s:    FPE  c cJ , ,r   r
   N)
scipy._lib._array_apir   r   	functoolsr   _baser   _gauss_legendrer   r
   r8   r   r   <module>r=      s    < % " 4A,_ A,r   