
    Џkhp7                     
   d Z ddlZddlmZmZmZmZ ddlmZ ddl	m
Z
mZ ddlmZ g dZ	 	 dd	Z ed
      dd       Z ed
      dd       ZddZ edd      d        Z ed      dd       ZddZ edd      d        Zy)z!Cholesky decomposition functions.    N)asarray_chkfiniteasarray
atleast_2d
empty_like)_apply_over_batch   )LinAlgError_datacopied)get_lapack_funcs)cholesky
cho_factor	cho_solvecholesky_bandedcho_solve_bandedc                 `   |rt        |       n
t        |       }t        |      }|j                  dk7  rt	        d|j                   d      |j
                  d   |j
                  d   k7  rt	        d|j
                   d      |j                  dk(  rCt        t        j                  d|j                              j                  }t        ||      |fS |xs t        ||       }t        d	|f      \  } |||||
      \  }}	|	dkD  rt        |	 d      |	dk  rt	        d|	  d      ||fS )z,Common code for cholesky() and cho_factor().   z*Input array needs to be 2D but received a zd-array.r   r   z8Input array is expected to be square but has the shape: .dtype)potrf)loweroverwrite_acleanz7-th leading minor of the array is not positive definitez$LAPACK reported an illegal value in z!-th argument on entry to "POTRF".)r   r   r   ndim
ValueErrorshapesizer   npeyer   r   r
   r   r	   )
ar   r   r   check_finitea1dtr   cinfos
             Y/var/www/teggl/fontify/venv/lib/python3.12/site-packages/scipy/linalg/_decomp_cholesky.py	_choleskyr'      sF    ".	1	71:B	BB 
ww!|EbggYhWXX	xx{bhhqk! '')xxj3 4 	4 
ww!|bffQbhh/066"B'..3R!3Kj2%0FEBeEJGAtaxfKL
 	
 ax2D5' :# $
 	
 e8O    )r    r   c                 ,    t        | ||d|      \  }}|S )aU  
    Compute the Cholesky decomposition of a matrix.

    Returns the Cholesky decomposition, :math:`A = L L^*` or
    :math:`A = U^* U` of a Hermitian positive-definite matrix A.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to be decomposed
    lower : bool, optional
        Whether to compute the upper- or lower-triangular Cholesky
        factorization. During decomposition, only the selected half of the
        matrix is referenced. Default is upper-triangular.
    overwrite_a : bool, optional
        Whether to overwrite data in `a` (may improve performance).
    check_finite : bool, optional
        Whether to check that the entire input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (M, M) ndarray
        Upper- or lower-triangular Cholesky factor of `a`.

    Raises
    ------
    LinAlgError : if decomposition fails.

    Notes
    -----
    During the finiteness check (if selected), the entire matrix `a` is
    checked. During decomposition, `a` is assumed to be symmetric or Hermitian
    (as applicable), and only the half selected by option `lower` is referenced.
    Consequently, if `a` is asymmetric/non-Hermitian, `cholesky` may still
    succeed if the symmetric/Hermitian matrix represented by the selected half
    is positive definite, yet it may fail if an element in the other half is
    non-finite.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky
    >>> a = np.array([[1,-2j],[2j,5]])
    >>> L = cholesky(a, lower=True)
    >>> L
    array([[ 1.+0.j,  0.+0.j],
           [ 0.+2.j,  1.+0.j]])
    >>> L @ L.T.conj()
    array([[ 1.+0.j,  0.-2.j],
           [ 0.+2.j,  5.+0.j]])

    Tr   r   r   r!   r'   r    r   r   r!   r$   s        r&   r   r   2   s#    p %[&24HAuHr(   c                 0    t        | ||d|      \  }}||fS )a
  
    Compute the Cholesky decomposition of a matrix, to use in cho_solve

    Returns a matrix containing the Cholesky decomposition,
    ``A = L L*`` or ``A = U* U`` of a Hermitian positive-definite matrix `a`.
    The return value can be directly used as the first parameter to cho_solve.

    .. warning::
        The returned matrix also contains random data in the entries not
        used by the Cholesky decomposition. If you need to zero these
        entries, use the function `cholesky` instead.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to be decomposed
    lower : bool, optional
        Whether to compute the upper or lower triangular Cholesky factorization.
        During decomposition, only the selected half of the matrix is referenced.
        (Default: upper-triangular)
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance)
    check_finite : bool, optional
        Whether to check that the entire input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (M, M) ndarray
        Matrix whose upper or lower triangle contains the Cholesky factor
        of `a`. Other parts of the matrix contain random data.
    lower : bool
        Flag indicating whether the factor is in the lower or upper triangle

    Raises
    ------
    LinAlgError
        Raised if decomposition fails.

    See Also
    --------
    cho_solve : Solve a linear set equations using the Cholesky factorization
                of a matrix.

    Notes
    -----
    During the finiteness check (if selected), the entire matrix `a` is
    checked. During decomposition, `a` is assumed to be symmetric or Hermitian
    (as applicable), and only the half selected by option `lower` is referenced.
    Consequently, if `a` is asymmetric/non-Hermitian, `cholesky` may still
    succeed if the symmetric/Hermitian matrix represented by the selected half
    is positive definite, yet it may fail if an element in the other half is
    non-finite.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cho_factor
    >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
    >>> c, low = cho_factor(A)
    >>> c
    array([[3.        , 1.        , 0.33333333, 1.66666667],
           [3.        , 2.44948974, 1.90515869, -0.27216553],
           [1.        , 5.        , 2.29330749, 0.8559528 ],
           [5.        , 1.        , 2.        , 1.55418563]])
    >>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4)))
    True

    Fr*   r+   r,   s        r&   r   r   o   s'    P %[&24HAue8Or(   c                 ,    | \  }}t        |||||      S )aM  Solve the linear equations A x = b, given the Cholesky factorization of A.

    Parameters
    ----------
    (c, lower) : tuple, (array, bool)
        Cholesky factorization of a, as given by cho_factor
    b : array
        Right-hand side
    overwrite_b : bool, optional
        Whether to overwrite data in b (may improve performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        The solution to the system A x = b

    See Also
    --------
    cho_factor : Cholesky factorization of a matrix

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cho_factor, cho_solve
    >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
    >>> c, low = cho_factor(A)
    >>> x = cho_solve((c, low), [1, 1, 1, 1])
    >>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
    True

    overwrite_br!   )
_cho_solve)c_and_lowerbr0   r!   r$   r   s         r&   r   r      s!    H HAuaE{VVr(   )r$   r   )r3   z1|2c                    |rt        |      }t        |       } nt        |      }t        |       } | j                  dk7  s| j                  d   | j                  d   k7  rt	        d      | j                  d   |j                  d   k7  r&t	        d| j                   d|j                   d      |j
                  dk(  rct        t        j                  d|j                        d	ft        j                  d| j                              j                  }t        ||      S |xs t        ||      }t        d
| |f      \  } || |||      \  }}	|	dk7  rt	        d|	  d      |S )Nr   r   r   z$The factored matrix c is not square.zincompatible dimensions (z and )r   T)potrsr   r0   illegal value in zth argument of internal potrs)r   r   r   r   r   r   r   r   r   r   onesr   r
   r   )
r$   r3   r   r0   r!   b1r#   r6   xr%   s
             r&   r1   r1      sC   q!a QZAJvv{aggajAGGAJ.?@@wwqzRXXa[ 4QWWIU288*ANOO 
ww!|q14813385 	"B''3R!3Kj1b'2FEArK@GAtqy,dUG3PQRRHr(   )abr   c                 l   |rt        |       } nt        |       } | j                  dk(  rGt        t	        j
                  ddgddgg| j                              j                  }t        | |      S t        d| f      \  } || ||      \  }}|dkD  rt        | d      |dk  rt        d| d      |S )	ai  
    Cholesky decompose a banded Hermitian positive-definite matrix

    The matrix a is stored in ab either in lower-diagonal or upper-
    diagonal ordered form::

        ab[u + i - j, j] == a[i,j]        (if upper form; i <= j)
        ab[    i - j, j] == a[i,j]        (if lower form; i >= j)

    Example of ab (shape of a is (6,6), u=2)::

        upper form:
        *   *   a02 a13 a24 a35
        *   a01 a12 a23 a34 a45
        a00 a11 a22 a33 a44 a55

        lower form:
        a00 a11 a22 a33 a44 a55
        a10 a21 a32 a43 a54 *
        a20 a31 a42 a53 *   *

    Parameters
    ----------
    ab : (u + 1, M) array_like
        Banded matrix
    overwrite_ab : bool, optional
        Discard data in ab (may enhance performance)
    lower : bool, optional
        Is the matrix in the lower form. (Default is upper form)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (u + 1, M) ndarray
        Cholesky factorization of a, in the same banded format as ab

    See Also
    --------
    cho_solve_banded :
        Solve a linear set equations, given the Cholesky factorization
        of a banded Hermitian.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky_banded
    >>> from numpy import allclose, zeros, diag
    >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
    >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
    >>> A = A + A.conj().T + np.diag(Ab[2, :])
    >>> c = cholesky_banded(Ab)
    >>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :])
    >>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5)))
    True

    r   r   r   )pbtrf)r   overwrite_abz'-th leading minor not positive definiter8   z-th argument of internal pbtrf)r   r   r   r   r   arrayr   r   r   r	   r   )r<   r?   r   r!   r#   r>   r$   r%   s           r&   r   r     s    z r"R[ 
ww!|RXX1v1v&6bhhGHNN"B''j2%0FEBe,?GAtaxTF"IJKKax,TF2PQRRHr(   c                 ,    | \  }}t        |||||      S )a  
    Solve the linear equations ``A x = b``, given the Cholesky factorization of
    the banded Hermitian ``A``.

    Parameters
    ----------
    (cb, lower) : tuple, (ndarray, bool)
        `cb` is the Cholesky factorization of A, as given by cholesky_banded.
        `lower` must be the same value that was given to cholesky_banded.
    b : array_like
        Right-hand side
    overwrite_b : bool, optional
        If True, the function will overwrite the values in `b`.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        The solution to the system A x = b

    See Also
    --------
    cholesky_banded : Cholesky factorization of a banded matrix

    Notes
    -----

    .. versionadded:: 0.8.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky_banded, cho_solve_banded
    >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
    >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
    >>> A = A + A.conj().T + np.diag(Ab[2, :])
    >>> c = cholesky_banded(Ab)
    >>> x = cho_solve_banded((c, False), np.ones(5))
    >>> np.allclose(A @ x - np.ones(5), np.zeros(5))
    True

    r/   )_cho_solve_banded)cb_and_lowerr3   r0   r!   cbr   s         r&   r   r   Q  s&    \ KRRE{*68 8r(   )rD   r   c                 L   |rt        |       } t        |      }nt        |       } t        |      }| j                  d   |j                  d   k7  rt        d      |j                  dk(  rtt        t        j                  ddgddgg| j                              }t        |dft        j                  d|j                              j                  }t        ||      S t        d| |f      \  } || |||	      \  }}	|	dkD  rt        |	 d
      |	dk  rt        d|	  d      |S )Nr   z&shapes of cb and b are not compatible.r   r   Tr   )pbtrsr7   z&th leading minor not positive definiter8   zth argument of internal pbtrs)r   r   r   r   r   r   r   r@   r   r   r9   r   r   r	   )
rD   r3   r   r0   r!   mr#   rG   r;   r%   s
             r&   rB   rB     s   r"a R[AJ 
xx|qwwqz!ABB 	vv{BHHq!fq!f%5RXXFGq$i!'')BCII!2&&j2q'2FEBK@GAtaxTF"HIJJax,dUG3PQRRHr(   )FFTT)FFT)FT)__doc__numpyr   r   r   r   r   scipy._lib._utilr   _miscr	   r
   lapackr   __all__r'   r   r   r   r1   r   r   rB    r(   r&   <module>rP      s    '  D D / + $ 8< F 89 9x 8I IX%WP 8\* +8 9L L^08f 9l+ ,r(   