
    Џkh3                     ~   d Z ddlmZ ddlmZmZ ddlZddlmZ ddl	m
Z
 ddlmZmZ dd	lmZ dd
lmZ ej$                  d   D  ci c]6  } | dj'                  dD cg c]  } ej(                  | |      s| c}      8 c}} Zg dZ e
d      dd       ZddZ e
ddd      d        Z	 	 ddZyc c}w c c}} w )zLU decomposition functions.    )warn)asarrayasarray_chkfiniteN)product)_apply_over_batch   )_datacopiedLinAlgWarning)get_lapack_funcs)lu_dispatcherAll fdFD)lulu_solve	lu_factor)a   c                    |rt        |       }nt        |       }|j                  dk(  r>t        j                  |      }t        j
                  dt        j                        }||fS |xs t        ||       }t        d|f      \  } |||      \  }}}|dk  rt        d|  d      |dkD  rt        d| dt        d	
       ||fS )al
  
    Compute pivoted LU decomposition of a matrix.

    The decomposition is::

        A = P L U

    where P is a permutation matrix, L lower triangular with unit
    diagonal elements, and U upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose
    overwrite_a : bool, optional
        Whether to overwrite data in A (may increase performance)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    lu : (M, N) ndarray
        Matrix containing U in its upper triangle, and L in its lower triangle.
        The unit diagonal elements of L are not stored.
    piv : (K,) ndarray
        Pivot indices representing the permutation matrix P:
        row i of matrix was interchanged with row piv[i].
        Of shape ``(K,)``, with ``K = min(M, N)``.

    See Also
    --------
    lu : gives lu factorization in more user-friendly format
    lu_solve : solve an equation system using the LU factorization of a matrix

    Notes
    -----
    This is a wrapper to the ``*GETRF`` routines from LAPACK. Unlike
    :func:`lu`, it outputs the L and U factors into a single array
    and returns pivot indices instead of a permutation matrix.

    While the underlying ``*GETRF`` routines return 1-based pivot indices, the
    ``piv`` array returned by ``lu_factor`` contains 0-based indices.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import lu_factor
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> lu, piv = lu_factor(A)
    >>> piv
    array([2, 2, 3, 3], dtype=int32)

    Convert LAPACK's ``piv`` array to NumPy index and test the permutation

    >>> def pivot_to_permutation(piv):
    ...     perm = np.arange(len(piv))
    ...     for i in range(len(piv)):
    ...         perm[i], perm[piv[i]] = perm[piv[i]], perm[i]
    ...     return perm
    ...
    >>> p_inv = pivot_to_permutation(piv)
    >>> p_inv
    array([2, 0, 3, 1])
    >>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu)
    >>> np.allclose(A[p_inv] - L @ U, np.zeros((4, 4)))
    True

    The P matrix in P L U is defined by the inverse permutation and
    can be recovered using argsort:

    >>> p = np.argsort(p_inv)
    >>> p
    array([1, 3, 0, 2])
    >>> np.allclose(A - L[p] @ U, np.zeros((4, 4)))
    True

    or alternatively:

    >>> P = np.eye(4)[p]
    >>> np.allclose(A - P @ L @ U, np.zeros((4, 4)))
    True
    r   dtype)getrf)overwrite_aillegal value in z)th argument of internal getrf (lu_factor)zDiagonal number z" is exactly zero. Singular matrix.r   )
stacklevel)r   r   sizenp
empty_likearangeint32r	   r   
ValueErrorr   r
   )r   r   check_finitea1r   pivr   infos           S/var/www/teggl/fontify/venv/lib/python3.12/site-packages/scipy/linalg/_decomp_lu.pyr   r      s    l q!QZ 
ww!|]]2ii*3w5+b!"4Kj2%0FE"+6MBTaxw&OP
 	
 axtf$FG	

 s7N    c                 .    | \  }}t        ||||||      S )aU  Solve an equation system, a x = b, given the LU factorization of a

    Parameters
    ----------
    (lu, piv)
        Factorization of the coefficient matrix a, as given by lu_factor.
        In particular piv are 0-indexed pivot indices.
    b : array
        Right-hand side
    trans : {0, 1, 2}, optional
        Type of system to solve:

        =====  =========
        trans  system
        =====  =========
        0      a x   = b
        1      a^T x = b
        2      a^H x = b
        =====  =========
    overwrite_b : bool, optional
        Whether to overwrite data in b (may increase performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        Solution to the system

    See Also
    --------
    lu_factor : LU factorize a matrix

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import lu_factor, lu_solve
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> b = np.array([1, 1, 1, 1])
    >>> lu, piv = lu_factor(A)
    >>> x = lu_solve((lu, piv), b)
    >>> np.allclose(A @ x - b, np.zeros((4,)))
    True

    )transoverwrite_br"   )	_lu_solve)
lu_and_pivbr)   r*   r"   r   r$   s          r&   r   r      s(    ` IRRau+".0 0r'   )r   r   )r$   r   )r-   z1|2c                 H   |rt        |      }nt        |      }|xs t        ||      }| j                  d   |j                  d   k7  r&t	        d| j                   d|j                   d      |j
                  dk(  rot        t        j                  d| j                        ddgft        j                  d|j                              }t        j                  ||j                        S t        d| |f      \  } || ||||	      \  }	}
|
dk(  r|	S t	        d
|
  d      )Nr   zShapes of lu z and b z are incompatibler   r   r   )getrs)r)   r*   r   z!th argument of internal gesv|posv)r   r   r	   shaper!   r   r   r   eyer   onesr   r   )r   r$   r-   r)   r*   r"   b1mr/   xr%   s              r&   r+   r+      s   q!QZ3R!3K	xx{bhhqk!=
'"((CTUVV 
ww!|bffQbhh/!Q8"''!177:ST}}Rqww//j2r(3FEBRu+FGAtqy
($/PQ
RRr'   c                 >
   |rt        j                  |       nt        j                  |       }|j                  dk  rt	        d      |j
                  j                  dvrNt        |j
                  j                     }|st        d|j
                   d      |j                  |d         }d}|j                  ^ }}}	t        ||	      }
|j
                  j                  dv rd	nd
}t        |j                   dk(  r|rRt        j                  g |||
|j
                        }t        j                  g ||
|	|j
                        }||fS |r)t        j                  g |dt         j                        nt        j                  g |dd|      }t        j                  g |||
|j
                        }t        j                  g ||
|	|j
                        }|||fS |j                  dd dk(  r|r*t        j                  |      |r|fS |j                         fS |rt        j                   g ||t"              nt        j                  |      }|t        j                  |      |r|fS |j                         fS t%        ||       s|s|j                  d      }|j&                  d   r|j&                  d   s|j                  d      }|skt        j                  |t         j                        }t        j                   |
|
g|j
                        }t)        ||||       ||	kD  r|||fn|||f\  }}}nt        j                  g ||t         j                        }||	kD  rrt        j                   g ||
|
|j
                        }t+        |j                  dd D cg c]  }t-        |       c} D ]  }t)        ||   ||   ||   |        |}nqt        j                   g ||
|
|j
                        }t+        |j                  dd D cg c]  }t-        |       c} D ]  }t)        ||   ||   ||   |        |}|s|s|rtt        j                   g ||||      }t        j.                  |D cg c]  }t        j0                  |       c}t        j0                  |      gz    }d|g ||<   |}n5t        j                   ||g|      }d|t        j0                  |      |f<   |}|r||fS |||fS c c}w c c}w c c}w )ar  
    Compute LU decomposition of a matrix with partial pivoting.

    The decomposition satisfies::

        A = P @ L @ U

    where ``P`` is a permutation matrix, ``L`` lower triangular with unit
    diagonal elements, and ``U`` upper triangular. If `permute_l` is set to
    ``True`` then ``L`` is returned already permuted and hence satisfying
    ``A = L @ U``.

    Parameters
    ----------
    a : (M, N) array_like
        Array to decompose
    permute_l : bool, optional
        Perform the multiplication P*L (Default: do not permute)
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    p_indices : bool, optional
        If ``True`` the permutation information is returned as row indices.
        The default is ``False`` for backwards-compatibility reasons.

    Returns
    -------
    **(If `permute_l` is ``False``)**

    p : (..., M, M) ndarray
        Permutation arrays or vectors depending on `p_indices`
    l : (..., M, K) ndarray
        Lower triangular or trapezoidal array with unit diagonal.
        ``K = min(M, N)``
    u : (..., K, N) ndarray
        Upper triangular or trapezoidal array

    **(If `permute_l` is ``True``)**

    pl : (..., M, K) ndarray
        Permuted L matrix.
        ``K = min(M, N)``
    u : (..., K, N) ndarray
        Upper triangular or trapezoidal array

    Notes
    -----
    Permutation matrices are costly since they are nothing but row reorder of
    ``L`` and hence indices are strongly recommended to be used instead if the
    permutation is required. The relation in the 2D case then becomes simply
    ``A = L[P, :] @ U``. In higher dimensions, it is better to use `permute_l`
    to avoid complicated indexing tricks.

    In 2D case, if one has the indices however, for some reason, the
    permutation matrix is still needed then it can be constructed by
    ``np.eye(M)[P, :]``.

    Examples
    --------

    >>> import numpy as np
    >>> from scipy.linalg import lu
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> p, l, u = lu(A)
    >>> np.allclose(A, p @ l @ u)
    True
    >>> p  # Permutation matrix
    array([[0., 1., 0., 0.],  # Row index 1
           [0., 0., 0., 1.],  # Row index 3
           [1., 0., 0., 0.],  # Row index 0
           [0., 0., 1., 0.]]) # Row index 2
    >>> p, _, _ = lu(A, p_indices=True)
    >>> p
    array([1, 3, 0, 2], dtype=int32)  # as given by row indices above
    >>> np.allclose(A, l[p, :] @ u)
    True

    We can also use nd-arrays, for example, a demonstration with 4D array:

    >>> rng = np.random.default_rng()
    >>> A = rng.uniform(low=-4, high=4, size=[3, 2, 4, 8])
    >>> p, l, u = lu(A)
    >>> p.shape, l.shape, u.shape
    ((3, 2, 4, 4), (3, 2, 4, 4), (3, 2, 4, 8))
    >>> np.allclose(A, p @ l @ u)
    True
    >>> PL, U = lu(A, permute_l=True)
    >>> np.allclose(A, PL @ U)
    True

    r   z1The input array must be at least two-dimensional.r   z
The dtype z5 cannot be cast to float(32, 64) or complex(64, 128).r   TfFfd)r0   r   r   N)r   r   C)orderC_CONTIGUOUS	WRITEABLEr   )r   r   r   ndimr!   r   charlapack_cast_dict	TypeErrorastyper0   minemptyr    	ones_likecopyzerosintr	   flagsr   r   rangeix_r   )r   	permute_lr   r"   	p_indicesr#   
dtype_charndr4   nk
real_dcharPLUPLpur5   indPand_ixs                         r&   r   r      s   @ %1		a	 bjjmB	ww{LMM 
xx}}F"%bhhmm4
j
 3D D E E YYz!}%IRAAq	A-3J BHH~"a288<B{{Q{{"((;Aq5L7@(B(("((3+B++1+Z8 {{Q{{"((;A{{Q{{"((;Aa7N 
xx}<<#KbGGRWWYGG8A"a4ll2& bll2&{JJ	JJ r1s#B HH^$+)>WW3WHHQbhh'HHaV288,b!Q	* !A1b!*Aq":1a
 HHXrX1XRXX.q52q!BHH5A288CR= Aaq AB BbgqvqvyABA 2q!BHH5A288CR= Aaq AB BbgqvqvyABA 	+B++1+Z8BFFB7qbiil71FHEB{{{OA1a&
3B"#Bryy|QAAq6-Q1I-1 !B !B 8s   0T"TT)FT)r   FT)FFTF)__doc__warningsr   numpyr   r   r   	itertoolsr   scipy._lib._utilr   _miscr	   r
   lapackr   _decomp_lu_cythonr   	typecodesjoincan_castrA   __all__r   r   r+   r   )r5   ys   00r&   <module>rj      s    !  ,   . . $ ,  \\%02 rww6Ga[R[[A5FGHH 2  * 8n nb20j 9j,7S 8S. <@|.K  H 2s   B9B45B49	B94B9