
    Џkh;]                        d Z ddgZddlZddlmZ ddlmZ ddl	m
Z
mZmZmZmZ dd	lmZ dd
lmZmZ ddlmZ ddlmZ ddlmZ dZ ej8                   ej:                  ej<                        j>                        Z d Z!dddddddddddddde dfdZ"dddddddde dddfdZ#dedede$de%de%f
dZ&dedede$de%de%f
dZ'y)a  
This module implements the Sequential Least Squares Programming optimization
algorithm (SLSQP), originally developed by Dieter Kraft.
See http://www.netlib.org/toms/733

Functions
---------
.. autosummary::
   :toctree: generated/

    approx_jacobian
    fmin_slsqp

approx_jacobian
fmin_slsqp    N   )slsqp)norm)OptimizeResult_check_unknown_options_prepare_scalar_function_clip_x_for_func_check_clip_x)approx_derivative)old_bound_to_new_arr_to_scalar)array_namespace)array_api_extra)NDArrayzrestructuredtext enc                 L    t        || d||      }t        j                  |      S )a  
    Approximate the Jacobian matrix of a callable function.

    Parameters
    ----------
    x : array_like
        The state vector at which to compute the Jacobian matrix.
    func : callable f(x,*args)
        The vector-valued function.
    epsilon : float
        The perturbation used to determine the partial derivatives.
    args : sequence
        Additional arguments passed to func.

    Returns
    -------
    An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
    of the outputs of `func`, and ``lenx`` is the number of elements in
    `x`.

    Notes
    -----
    The approximation is done using forward differences.

    2-point)methodabs_stepargs)r   np
atleast_2d)xfuncepsilonr   jacs        T/var/www/teggl/fontify/venv/lib/python3.12/site-packages/scipy/optimize/_slsqp_py.pyr   r   #   s*    6 D!I!%'C ==     d   gư>c                   
 ||}||||dk7  ||d}d}|t        
fd|D              z  }|t        
fd|D              z  }|r|d||
dfz  }|r|d||	
dfz  }t        | |
f|||d	|}|r|d
   |d   |d   |d   |d   fS |d
   S )aC  
    Minimize a function using Sequential Least Squares Programming

    Python interface function for the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.  Must return a scalar.
    x0 : 1-D ndarray of float
        Initial guess for the independent variable(s).
    eqcons : list, optional
        A list of functions of length n such that
        eqcons[j](x,*args) == 0.0 in a successfully optimized
        problem.
    f_eqcons : callable f(x,*args), optional
        Returns a 1-D array in which each element must equal 0.0 in a
        successfully optimized problem. If f_eqcons is specified,
        eqcons is ignored.
    ieqcons : list, optional
        A list of functions of length n such that
        ieqcons[j](x,*args) >= 0.0 in a successfully optimized
        problem.
    f_ieqcons : callable f(x,*args), optional
        Returns a 1-D ndarray in which each element must be greater or
        equal to 0.0 in a successfully optimized problem. If
        f_ieqcons is specified, ieqcons is ignored.
    bounds : list, optional
        A list of tuples specifying the lower and upper bound
        for each independent variable [(xl0, xu0),(xl1, xu1),...]
        Infinite values will be interpreted as large floating values.
    fprime : callable ``f(x,*args)``, optional
        A function that evaluates the partial derivatives of func.
    fprime_eqcons : callable ``f(x,*args)``, optional
        A function of the form ``f(x, *args)`` that returns the m by n
        array of equality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
    fprime_ieqcons : callable ``f(x,*args)``, optional
        A function of the form ``f(x, *args)`` that returns the m by n
        array of inequality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
    args : sequence, optional
        Additional arguments passed to func and fprime.
    iter : int, optional
        The maximum number of iterations.
    acc : float, optional
        Requested accuracy.
    iprint : int, optional
        The verbosity of fmin_slsqp :

        * iprint <= 0 : Silent operation
        * iprint == 1 : Print summary upon completion (default)
        * iprint >= 2 : Print status of each iterate and summary
    disp : int, optional
        Overrides the iprint interface (preferred).
    full_output : bool, optional
        If False, return only the minimizer of func (default).
        Otherwise, output final objective function and summary
        information.
    epsilon : float, optional
        The step size for finite-difference derivative estimates.
    callback : callable, optional
        Called after each iteration, as ``callback(x)``, where ``x`` is the
        current parameter vector.

    Returns
    -------
    out : ndarray of float
        The final minimizer of func.
    fx : ndarray of float, if full_output is true
        The final value of the objective function.
    its : int, if full_output is true
        The number of iterations.
    imode : int, if full_output is true
        The exit mode from the optimizer (see below).
    smode : string, if full_output is true
        Message describing the exit mode from the optimizer.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'SLSQP' `method` in particular.

    Notes
    -----
    Exit modes are defined as follows:

    - ``-1`` : Gradient evaluation required (g & a)
    - ``0`` : Optimization terminated successfully
    - ``1`` : Function evaluation required (f & c)
    - ``2`` : More equality constraints than independent variables
    - ``3`` : More than 3*n iterations in LSQ subproblem
    - ``4`` : Inequality constraints incompatible
    - ``5`` : Singular matrix E in LSQ subproblem
    - ``6`` : Singular matrix C in LSQ subproblem
    - ``7`` : Rank-deficient equality constraint subproblem HFTI
    - ``8`` : Positive directional derivative for linesearch
    - ``9`` : Iteration limit reached

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.

    r   )maxiterftoliprintdispepscallbackr    c              3   *   K   | ]
  }d |d  yw)eqtypefunr   Nr    .0cr   s     r   	<genexpr>zfmin_slsqp.<locals>.<genexpr>   s     IQ448I   c              3   *   K   | ]
  }d |d  yw)ineqr+   Nr    r.   s     r   r1   zfmin_slsqp.<locals>.<genexpr>   s     Lq6!T:Lr2   r*   )r,   r-   r   r   r4   )r   boundsconstraintsr   r-   nitstatusmessage)tuple_minimize_slsqp)r   x0eqconsf_eqconsieqcons	f_ieqconsr5   fprimefprime_eqconsfprime_ieqconsr   iteraccr%   r&   full_outputr   r(   optsconsress             `          r   r   r   E   s    ` aK "D D 	EI&IIIDELGLLLD $x  # 	#&>  # 	# $D 4fV&*4.24C3xUSZXINN3xr   Fc                 b  45 t        |       |}|
4|	sd}t        |      }t        j                  |j	                  |      d|      }|j
                  }|j                  |j                  d      r|j                  }|j                  |j                  ||      d      }|t        |      dk(  r"t        j                   t        j                  f5nt        |      5t        j                  |5d   5d         }t        |t               r|f}ddd}t#        |      D ]  \  }}	 |d	   j%                         }|dvrt'        d
|d	    d      d|vrt'        d| d      |j/                  d      }|45fd} ||d         }||xx   |d   ||j/                  dd      dfz  cc<    ddddddddddd d!}t1        t3        t        |d"   D cg c]$  }t        j4                   |d   |g|d          & c}            }t1        t3        t        |d#   D cg c]$  }t        j4                   |d   |g|d          & c}            }||z   }t        |      }|t        |      dk(  rvt        j6                  |t8        $      } t        j6                  |t8        $      }!| j;                  t        j<                         |!j;                  t        j<                         n=t        j>                  |D "#cg c]  \  }"}#tA        |"      tA        |#      f c}#}"t8              }$|$jB                  d   |k7  rtE        d%      t        jF                  d&'      5  |$dddf   |$dddf   kD  }%ddd       %jI                         r%t'        d(d)jK                  d* |%D               d+      |$dddf   jM                         |$dddf   jM                         }!} t        jN                  |$       }&t        j<                  | |&dddf   <   t        j<                  |!|&dddf   <   tQ        | |||
5|,      }'tS        |'jT                  5      }(tS        |'jV                  5      })i d-|d.d/d0d/d1d/d2d/d3d/d4d/d5d/d6d/d7d/d8d9|z  d:dd;dd<dd=dd>|d?d||d|d@}*|dAk\  rtY        dBdCdDdEdCdDdFdGdDdHdG       t        jZ                  t]        |dA|z  z   dAz   d      gt        j^                  $      }+||dz   z  dAz  dI|z  |z  z   |dJ|z  z   dKz   |z  z
  dL|z  z   dM|z  |z  z   dN|z  z   ||z  z   dOz   },|dk(  r|,dA|z  |dz   z  z  },t        jZ                  t]        |,d      t        j
                  $      }- |(|      }. |)|      }/t        jZ                  t]        d|dA|z  z   dAz         gt        j
                  $      }0t        jZ                  t]        d|      |gt        j
                  dPQ      }1t        jZ                  t]        d|      gt        j
                  $      }2ta        |1||||       tc        |2||||       d}3	 te        |*|.|/|1|2||0| |!|-|+       |*dR   dk(  r |'jU                  |      }.tc        |2||||       |*dR   dk(  r |'jW                  |      }/ta        |1||||       |*d=   |3kD  rR| |t        jL                  |             |dAk\  r0tY        |*d=   dSdD|'jf                  dSdD|.dTdDti        |/      dT       tk        |*dR         dk7  rn|*d=   }3|dk\  rbtY        ||*dR      dU|*dR    dVz          tY        dW|.       tY        dX|*d=          tY        dY|'jf                         tY        dZ|'jl                         to        ||.|/|*d=   |'jf                  |'jl                  |*dR   ||*dR      |*dR   dk(  |0d| [
      S # t(        $ r}t)        d| d      |d}~wt*        $ r}t+        d      |d}~wt,        $ r}t+        d      |d}~ww xY wc c}w c c}w c c}#}"w # 1 sw Y   xY w)\a  
    Minimize a scalar function of one or more variables using Sequential
    Least Squares Programming (SLSQP).

    Parameters
    ----------
    ftol : float
        Precision target for the value of f in the stopping criterion. This value
        controls the final accuracy for checking various optimality conditions;
        gradient of the lagrangian and absolute sum of the constraint violations
        should be lower than ``ftol``. Similarly, computed step size and the
        objective function changes are checked against this value. Default is 1e-6.
    eps : float
        Step size used for numerical approximation of the Jacobian.
    disp : bool
        Set to True to print convergence messages. If False,
        `verbosity` is ignored and set to 0.
    maxiter : int
        Maximum number of iterations.
    finite_diff_rel_step : None or array_like, optional
        If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to
        use for numerical approximation of `jac`. The absolute step
        size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
        possibly adjusted to fit into the bounds. For ``method='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    workers : int, map-like callable, optional
        A map-like callable, such as `multiprocessing.Pool.map` for evaluating
        any numerical differentiation in parallel.
        This evaluation is carried out as ``workers(fun, iterable)``.

        .. versionadded:: 1.16.0

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as an `OptimizeResult` object.
        In this dict-like object the following fields are of particular importance:
        ``x`` the solution array, ``success`` a Boolean flag indicating if the
        optimizer exited successfully, ``message`` which describes the reason for
        termination, and ``multipliers`` which contains the Karush-Kuhn-Tucker
        (KKT) multipliers for the QP approximation used in solving the original
        nonlinear problem. See ``Notes`` below. See also `OptimizeResult` for a
        description of other attributes.

    Notes
    -----
    The KKT multipliers are returned in the ``OptimizeResult.multipliers``
    attribute as a NumPy array. Denoting the dimension of the equality constraints
    with ``meq``, and of inequality constraints with ``mineq``, then the returned
    array slice ``m[:meq]`` contains the multipliers for the equality constraints,
    and the remaining ``m[meq:meq + mineq]`` contains the multipliers for the 
    inequality constraints. The multipliers corresponding to bound inequalities 
    are not returned. See [1]_ pp. 321 or [2]_ for an explanation of how to interpret
    these multipliers. The internal QP problem is solved using the methods given
    in [3]_ Chapter 25.

    Note that if new-style `NonlinearConstraint` or `LinearConstraint` were
    used, then ``minimize`` converts them first to old-style constraint dicts.
    It is possible for a single new-style constraint to simultaneously contain
    both inequality and equality constraints. This means that if there is mixing
    within a single constraint, then the returned list of multipliers will have
    a different length than the original new-style constraints.

    References
    ----------
    .. [1] Nocedal, J., and S J Wright, 2006, "Numerical Optimization", Springer,
       New York.
    .. [2] Kraft, D., "A software package for sequential quadratic programming",
       1988, Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center, Germany.
    .. [3] Lawson, C. L., and R. J. Hanson, 1995, "Solving Least Squares Problems",
       SIAM, Philadelphia, PA.

    r   r   )ndimxpzreal floatingNr    )r*   r4   r,   zUnknown constraint type 'z'.zConstraint z has no type defined.z/Constraints must be defined using a dictionary.z#Constraint's type must be a string.r-   z has no function defined.r   c                       fd}|S )Nc                 h    t        |       } dv rt        | |      S t        | d|      S )N)r   z3-pointcs)r   r   rel_stepr5   r   )r   r   r   r5   )r   r   )r   r   r   finite_diff_rel_stepr-   r   
new_boundss     r   cjacz3_minimize_slsqp.<locals>.cjac_factory.<locals>.cjac]  sT    %a4A::0a$:N8B D D  1a	:A8B D Dr   r    )r-   rT   r   rR   r   rS   s   ` r   cjac_factoryz%_minimize_slsqp.<locals>.cjac_factory\  s    
D 
D r   r   )r-   r   r   z$Gradient evaluation required (g & a)z$Optimization terminated successfullyz$Function evaluation required (f & c)z4More equality constraints than independent variablesz*More than 3*n iterations in LSQ subproblemz#Inequality constraints incompatiblez#Singular matrix E in LSQ subproblemz#Singular matrix C in LSQ subproblemz2Rank-deficient equality constraint subproblem HFTIz.Positive directional derivative for linesearchzIteration limit reached)rM   r   r                        	   r*   r4   )dtypezDSLSQP Error: the length of bounds is not compatible with that of x0.ignore)invalidzSLSQP Error: lb > ub in bounds z, c              3   2   K   | ]  }t        |        y w)N)str)r/   bs     r   r1   z"_minimize_slsqp.<locals>.<genexpr>  s     )AQ#a&)As   .)r   r   r   rR   r5   workersrE   alphag        f0gsh1h2h3h4tt0tolg      $@exactinconsistentresetrD   itermaxline)mmeqmodenrV   NITz>5 FCOBJFUNz>16GNORMrW   rY   r[   r]   r\   #      F)r^   orderrw   5dz16.6Ez    (Exit mode )z#            Current function value:z            Iterations:z!            Function evaluations:z!            Gradient evaluations:)
r   r-   r   r7   nfevnjevr8   r9   successmultipliers)8r	   r   xpx
atleast_ndasarrayfloat64isdtyper^   reshapeastypelenr   infr   clip
isinstancedict	enumeratelower
ValueErrorKeyError	TypeErrorAttributeErrorgetsummap
atleast_1demptyfloatfillnanarrayr   shape
IndexErrorerrstateanyjoincopyisfiniter
   r   r-   gradprintzerosmaxint32_eval_con_normals_eval_constraintr   r   lanormabsngevr   )6r   r<   r   r   r5   r6   r#   r$   r%   r&   r'   r(   rR   re   unknown_optionsrE   rL   r^   r   rH   icconctypeerT   rU   
exit_modesr0   rv   mieqru   rx   xlxuloupbndsbnderrinfbndsfwrapped_funwrapped_grad
state_dictindicesbuffer_sizebufferfxgmultCd	iter_prevr   rS   s6      `        `                                       @@r   r;   r;      s	   ^ ?+
CG 
	B	

2Q2	6BJJE	zz"((O,


299R',A ~V)vvgrvv&
%f-
 	:a=*Q-0A +t$"ob!D[) +9C	NK%%'E N* #<S[M!LMM {2$.GHII wwu~<  E
+D 	UE
 $!$!46 9 	9S+9Z =<<LB;;;JF/
1J c#Dz# hahq&=1V9&=> # $ %Cs3V& xqx'>AfI'>? & ' (D 	d
AAA ~V)XXau%XXau%

xx&,."2r ),nR.@A ./46::a=A ; < < [[* 	-!Q$Z$q!t*,F	- ::<> $		)A&)A AB!E F Fad"DAJOO$5B ++d##666!Q$<666!Q$< 
"$ss7K)3W
FB
 #266:6K#BGGZ8L.s 	c 	c	
 	c 	c 	c 	c 	S 	c 	tCx 	 	 	 	  	7!" 	#$ +J2 {r
!D9Ahs^1WSMBC hhA!GaK+,BHH=G 	
1Q3
QqSUa!A#gk3..14qs1u<r!tCc#gMPRR 
 qyqsAE{"XXc+q)<F
 
QBQA 88SA!GaK()<D 	#a)Qrzz=A
#a)BJJ/AaD!S)Q4C(I
j"aAq$BHf"BQ4C0f#
AaD!S1f	)#$ {F+B/qAE
!F1Ie#46 7 z&!"a'v&	5 : {z&)*z&?Q>RRS-TT	
 	3R8'F);<1277;1277;

6 2rww&!:j6H+IF#q(tBQx C  	K[,ABCJ 	2 * +012 	JABI	Jd#&.	- 	-sN   $_)`)`9 `
`$	`_`(_44` ``$`.r   r   rH   ru   rv   c                    |dk(  ry |dkD  r[d}|d   D ]Q  }t        j                   |d   |g|d          j                         }|| ||t        |      z    |t        |      z  }S ||kD  r[|}|d   D ]Q  }t        j                   |d   |g|d          j                         }|| ||t        |      z    |t        |      z  }S y )Nr   r*   r-   r   r4   )r   r   ravelr   )r   r   rH   ru   rv   rowr   temps           r   r   r   0  s    Av Qw: 	C==UA!<F!<=CCED%)Ac#D	/"3t9C	
 	3w< 	C==UA!<F!<=CCED%)Ac#D	/"3t9C	
 r   r   c                    |dk(  ry |dkD  r[d}|d   D ]Q  }t        j                   |d   |g|d          }|| |||j                  d   z   d d f<   ||j                  d   z  }S ||kD  r[|}|d   D ]Q  }t        j                   |d   |g|d          }|| |||j                  d   z   d d f<   ||j                  d   z  }S y )Nr   r*   r   r   r4   )r   r   r   )r   r   rH   ru   rv   r   r   r   s           r   r   r   I  s    Av
Qw: 	!C==UA!<F!<=D,0Ac#

1%%q()4::a= C	!
 	3w< 	!C==UA!<F!<=D,0Ac#

1%%q()4::a= C	!
 r   )(__doc____all__numpyr   	_slsqplibr   scipy.linalgr   r   	_optimizer   r	   r
   r   r   _numdiffr   _constraintsr   r   scipy._lib._array_apir   
scipy._libr   r   numpy.typingr   __docformat__sqrtfinfor   r'   _epsilonr   r   r;   r   intr   r   r    r   r   <module>r      s   l
+   '' ' ( : 1 -  %2778288BJJ'++,D !#T2T"#6d8	Od $&4 "fQU 4d 	Vr
 G 4 C c 2 W D S s r   