
    ЏkhH                     <    d dl mZmZmZmZmZ d dlmZ ddZddZ	y)    )arangenewaxishstackprodarray)linalgc                 H   | |dz   k  rt        d      | dz  dk(  rt        d      | dz	  }t        | |dz         }|ddt        f   }|dz  }t        d|       D ]  }t	        |||z  g      } t        t        d|dz         d	      t        j                  |      |   z  }|S )
a  
    Return weights for an Np-point central derivative.

    Assumes equally-spaced function points.

    If weights are in the vector w, then
    derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)

    Parameters
    ----------
    Np : int
        Number of points for the central derivative.
    ndiv : int, optional
        Number of divisions. Default is 1.

    Returns
    -------
    w : ndarray
        Weights for an Np-point central derivative. Its size is `Np`.

    Notes
    -----
    Can be inaccurate for a large number of points.

    Examples
    --------
    We can calculate a derivative value of a function.

    >>> def f(x):
    ...     return 2 * x**2 + 3
    >>> x = 3.0 # derivative point
    >>> h = 0.1 # differential step
    >>> Np = 3 # point number for central derivative
    >>> weights = _central_diff_weights(Np) # weights for first derivative
    >>> vals = [f(x + (i - Np/2) * h) for i in range(Np)]
    >>> sum(w * v for (w, v) in zip(weights, vals))/h
    11.79999999999998

    This value is close to the analytical solution:
    f'(x) = 4x, so f'(3) = 12

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Finite_difference

       z;Number of points must be at least the derivative order + 1.   r   z!The number of points must be odd.      ?N        axis)
ValueErrorr   r   ranger   r   r   inv)NpndivhoxXkws          [/var/www/teggl/fontify/venv/lib/python3.12/site-packages/scipy/stats/_finite_differences.py_central_diff_weightsr      s    ^ 
D1H}I
 	
 
Av{<==	qBsBHA	!W*A	3A1b\ Aq!t9VAtax q)FJJqM$,??AH    c                    ||dz   k  rt        d      |dz  dk(  rt        d      |dk(  re|dk(  rt        g d      dz  }n|d	k(  rt        g d
      dz  }n|dk(  rt        g d      dz  }n|dk(  rt        g d      dz  }nt        |d      }ns|dk(  rb|dk(  rt        g d      }n[|d	k(  rt        g d      dz  }nE|dk(  rt        g d      dz  }n/|dk(  rt        g d      dz  }nt        |d      }nt        ||      }d}|dz	  }t        |      D ]  }	|||	    | ||	|z
  |z  z   g| z  z  } |t	        |f|z  d      z  S )a
  
    Find the nth derivative of a function at a point.

    Given a function, use a central difference formula with spacing `dx` to
    compute the nth derivative at `x0`.

    Parameters
    ----------
    func : function
        Input function.
    x0 : float
        The point at which the nth derivative is found.
    dx : float, optional
        Spacing.
    n : int, optional
        Order of the derivative. Default is 1.
    args : tuple, optional
        Arguments
    order : int, optional
        Number of points to use, must be odd.

    Notes
    -----
    Decreasing the step size too small can result in round-off error.

    Examples
    --------
    >>> def f(x):
    ...     return x**3 + x**2
    >>> _derivative(f, 1.0, dx=1e-6)
    4.9999999999217337

    r
   zm'order' (the number of points used to compute the derivative), must be at least the derivative order 'n' + 1.r   r   zJ'order' (the number of points used to compute the derivative) must be odd.   )r   r
   g       @   )r
   ir      r   g      (@   )r   	   ir   -   r
   g      N@r#   )	r   i   i`r   i  iX    g     @@)r
   g       r
   )r      ir)   r   )r     ir+   r*   r   g     f@)	r%        ir.   r-   r,   r%   g     @r   r   )r   r   r   r   r   )
funcx0dxnargsorderweightsvalr   r   s
             r   _derivativer7   E   s   D q1u}=
 	
 qyA~
 	

 	AvA:J'#-GaZ-.5GaZ67$>GaZEFNG+E15G	
aA:L)GaZ12T9GaZ<=EGaZJK 
 ,E15G'q1
C	!B5\ <wqzDq2vm!3;d;;;<reaia(((r   N)r
   )r   r
    r   )
numpyr   r   r   r   r   scipyr   r   r7   r8   r   r   <module>r;      s    6 6 =@L)r   