
    kh                        d dl mZ d dlmZ d dlmZmZmZ d dlm	Z	m
Z
 d dlmZ ddlmZ ddlmZ d	d
lmZmZmZ d	dlmZ d	dlmZmZmZ d	dlmZmZmZ g dZ  G d de	jB                        Z" G d de	jB                        Z#dede$de"fdZ% G d de      Z& e        ede&jN                  fdejP                  f      dddejP                  ddee&   d e)dee$   d!ee   d"ede"fd#              Z*y)$    )OrderedDict)partial)AnyDictOptional)nnTensor)
functional   )SemanticSegmentation)_log_api_usage_once   )register_modelWeightsWeightsEnum)_VOC_CATEGORIES)_ovewrite_value_paramhandle_legacy_interfaceIntermediateLayerGetter)mobilenet_v3_largeMobileNet_V3_Large_WeightsMobileNetV3)LRASPP!LRASPP_MobileNet_V3_Large_Weightslraspp_mobilenet_v3_largec                   n     e Zd ZdZ	 ddej
                  dededededdf fd	Zd
ede	e
ef   fdZ xZS )r   a  
    Implements a Lite R-ASPP Network for semantic segmentation from
    `"Searching for MobileNetV3"
    <https://arxiv.org/abs/1905.02244>`_.

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "high" for the high level feature map and "low" for the low level feature map.
        low_channels (int): the number of channels of the low level features.
        high_channels (int): the number of channels of the high level features.
        num_classes (int, optional): number of output classes of the model (including the background).
        inter_channels (int, optional): the number of channels for intermediate computations.
    backbonelow_channelshigh_channelsnum_classesinter_channelsreturnNc                 l    t         |           t        |        || _        t	        ||||      | _        y )N)super__init__r   r   
LRASPPHead
classifier)selfr   r   r   r    r!   	__class__s         b/var/www/teggl/fontify/venv/lib/python3.12/site-packages/torchvision/models/segmentation/lraspp.pyr%   zLRASPP.__init__#   s1     	D! $\=+~^    inputc                     | j                  |      }| j                  |      }t        j                  ||j                  dd  dd      }t               }||d<   |S )NbilinearFsizemodealign_cornersout)r   r'   Finterpolateshaper   )r(   r,   featuresr4   results        r*   forwardzLRASPP.forward+   sS    =='ooh'mmCekk"#&6ZW\]ur+   )   )__name__
__module____qualname____doc__r   Moduleintr%   r	   r   strr:   __classcell__r)   s   @r*   r   r      sk      sv_		_14_EH_WZ_lo_	_V S&[(9 r+   r   c            
       N     e Zd Zdededededdf
 fdZdeeef   defd	Z xZ	S )
r&   r   r   r    r!   r"   Nc           	         t         |           t        j                  t        j                  ||dd      t        j
                  |      t        j                  d            | _        t        j                  t        j                  d      t        j                  ||dd      t        j                               | _
        t        j                  ||d      | _        t        j                  ||d      | _        y )N   F)biasT)inplace)r$   r%   r   
SequentialConv2dBatchNorm2dReLUcbrAdaptiveAvgPool2dSigmoidscalelow_classifierhigh_classifier)r(   r   r   r    r!   r)   s        r*   r%   zLRASPPHead.__init__7   s    ==IIm^QUCNN>*GGD!

 ]]  #IIm^QUCJJL


 !iik1E!yyaHr+   r,   c                     |d   }|d   }| j                  |      }| j                  |      }||z  }t        j                  ||j                  dd  dd      }| j                  |      | j                  |      z   S )Nlowhighr.   r/   Fr0   )rN   rQ   r5   r6   r7   rR   rS   )r(   r,   rU   rV   xss         r*   r:   zLRASPPHead.forwardF   sx    ElV}HHTNJJtEMM!#))BC.zQVW""3'$*>*>q*AAAr+   )
r<   r=   r>   rA   r%   r   rB   r	   r:   rC   rD   s   @r*   r&   r&   6   sR    IS I I3 I`c Ihl I	BT#v+. 	B6 	Br+   r&   r   r    r"   c           
      X   | j                   } dgt        |       D cg c]  \  }}t        |dd      s| c}}z   t        |       dz
  gz   }|d   }|d   }| |   j                  }| |   j                  }t        | t        |      dt        |      di	      } t        | |||      S c c}}w )
Nr   _is_cnFrG   rU   rV   )return_layers)r8   	enumerategetattrlenout_channelsr   rB   r   )	r   r    ibstage_indiceslow_poshigh_posr   r   s	            r*   _lraspp_mobilenetv3rg   R   s      H C8)<\A8UZ@[1\\`cdl`mpq`q_rrMBGR HG$11LX&33M&xGeUXYaUbdj?klH(L-EE ]s
   B&B&c                   R    e Zd Z ed eed      deddddd	d
idddd      ZeZy)r   zJhttps://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pthi  )resize_sizei"(1 )rG   rG   z]https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_largezCOCO-val2017-VOC-labelsg33333L@gV@)miou	pixel_accg㥛  @g{G(@z
                These weights were trained on a subset of COCO, using only the 20 categories that are present in the
                Pascal VOC dataset.
            )
num_params
categoriesmin_sizerecipe_metrics_ops
_file_size_docs)url
transformsmetaN)	r<   r=   r>   r   r   r   r   COCO_WITH_VOC_LABELS_V1DEFAULT r+   r*   r   r   `   sS    %X/SA!)u) !%, 
, &Gr+   r   
pretrainedpretrained_backbone)weightsweights_backboneNT)r|   progressr    r}   r|   r~   r}   kwargsc                 f   |j                  dd      rt        d      t        j                  |       } t	        j                  |      }| &d}t        d|t        | j                  d               }n|d}t        |d	      }t        ||      }| "|j                  | j                  |d
             |S )a|  Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
    `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.

    .. betastatus:: segmentation module

    Args:
        weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background).
        aux_loss (bool, optional): If True, it uses an auxiliary loss.
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
            weights for the backbone.
        **kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
        :members:
    aux_lossFz&This model does not use auxiliary lossNr    rm      T)r|   dilated)r~   
check_hash)popNotImplementedErrorr   verifyr   r   r`   rv   r   rg   load_state_dictget_state_dict)r|   r~   r    r}   r   r   models          r*   r   r   z   s    L zz*e$!"JKK/66w?G1889IJ+M;GLLYeLfHgh		!*:DIH+6Eg44hSW4XYLr+   )+collectionsr   	functoolsr   typingr   r   r   torchr   r	   torch.nnr
   r5   transforms._presetsr   utilsr   _apir   r   r   _metar   _utilsr   r   r   mobilenetv3r   r   r   __all__r@   r   r&   rA   rg   r   rw   IMAGENET1K_V1boolr   ry   r+   r*   <module>r      s(   #  & &  $ 7 ( 7 7 # \ \ U U W RYY  FB B8F+ FC FF F& &4 <TTU+-G-U-UV <@!%=W=e=e3783 3 #	3
 9:3 3 3	 
3r+   