
    kh)                         d dl Z d dlZ d dl mZmZ d dlmZ d dlmZ ddlm	Z	 ddl
mZmZ e j                  j                  	 	 dd	ed
ededededefd       Z G d dej$                        Zy)    N)nnTensor)_pair)_assert_has_ops   )_log_api_usage_once   )check_roi_boxes_shapeconvert_boxes_to_roi_formatinputboxesoutput_sizespatial_scalesampling_ratioreturnc                    t         j                  j                         s-t         j                  j                         st	        t
               t                t        |       |}t        |      }t        |t         j                        st        |      }t         j                  j                  j                  | |||d   |d   |      \  }}|S )aT  
    Performs Position-Sensitive Region of Interest (RoI) Align operator
    mentioned in Light-Head R-CNN.

    Args:
        input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
            contains ``C`` feature maps of dimensions ``H x W``.
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
            format where the regions will be taken from.
            The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
            If a single Tensor is passed, then the first column should
            contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
            If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
            in the batch.
        output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling
            is performed, as (height, width).
        spatial_scale (float): a scaling factor that maps the box coordinates to
            the input coordinates. For example, if your boxes are defined on the scale
            of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of
            the original image), you'll want to set this to 0.5. Default: 1.0
        sampling_ratio (int): number of sampling points in the interpolation grid
            used to compute the output value of each pooled output bin. If > 0,
            then exactly ``sampling_ratio x sampling_ratio`` sampling points per bin are used. If
            <= 0, then an adaptive number of grid points are used (computed as
            ``ceil(roi_width / output_width)``, and likewise for height). Default: -1

    Returns:
        Tensor[K, C / (output_size[0] * output_size[1]), output_size[0], output_size[1]]: The pooled RoIs
    r   r	   )torchjitis_scripting
is_tracingr   ps_roi_alignr   r
   r   
isinstancer   r   opstorchvision)r   r   r   r   r   roisoutput_s           X/var/www/teggl/fontify/venv/lib/python3.12/site-packages/torchvision/ops/ps_roi_align.pyr   r      s    J 99!!#EII,@,@,BL)% D$KdELL)*40		%%22t]KNKNNIFA M    c                   P     e Zd ZdZdededef fdZdededefd	Zde	fd
Z
 xZS )
PSRoIAlignz#
    See :func:`ps_roi_align`.
    r   r   r   c                 b    t         |           t        |        || _        || _        || _        y N)super__init__r   r   r   r   )selfr   r   r   	__class__s       r   r%   zPSRoIAlign.__init__C   s0     	D!&*,r   r   r   r   c                 \    t        ||| j                  | j                  | j                        S r#   )r   r   r   r   )r&   r   r   s      r   forwardzPSRoIAlign.forwardO   s'    E4)9)94;M;MtObObccr   c                     | j                   j                   d| j                   d| j                   d| j                   d}|S )Nz(output_size=z, spatial_scale=z, sampling_ratio=))r'   __name__r   r   r   )r&   ss     r   __repr__zPSRoIAlign.__repr__R   sS    ~~&&' (++,t112 3 34	 	
 r   )r,   
__module____qualname____doc__intfloatr%   r   r)   strr.   __classcell__)r'   s   @r   r!   r!   >   sS    
-
- 
- 	
-dV d6 df d# r   r!   )g      ?)r   torch.fxr   r   torch.nn.modules.utilsr   torchvision.extensionr   utilsr   _utilsr
   r   fxwrapr2   r3   r   Moduler!    r   r   <module>r@      s       ( 1 ' F 
 /// / 	/
 / / /d r   